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Solid-body collisions between smooth particles in a gas would not occur if the 
lubrication force for a continuum incompressible fluid were to hold at all particle 
separations. When the gap between the particles is of the order of the mean free 
path lo of the gas, the discrete molecular nature of the gas becomes important. For 
particles of radii a smaller than about 50pm colliding in air at a relative velocity 
comparable to their terminal velocity, the effects of compressibility of the gas in the 
gap are not important. 

The nature of the flow in the gap depends on the relative magnitudes of the 
minimum gap thickness ho = ae, the mean-free path l o ,  and the distance a d 2  over 
which the effects of curvature become important. The slip-flow regime, ae%-lo, was 
analysed by Hocking (1973) using the Maxwell slip boundary condition at the particle 
surface. To find the lubrication force in the transition regime (ae - O(lO)), we use the 
results of Cercignani & Daneri (1963) for the flux as a function of the pressure gradient 
in a Poiseuille channel flow. When ae.glo.gae'/*, one might expect the local flow in 
the gap to be governed by Knudsen diffusion. However, an attempt to calculate 
the Knudsen diffusivity between parallel plates leads to a logarithmic divergence, 
which is cut off by intermolecular collisions, and the flux is therefore proportional to 
ho Z log(lo/ho), where Z is the mean molecular speed. The non-continuum lubrication 
force is shown to have a weak, log-log divergence as the particle separation goes to 
zero. As a result, the energy dissipated in the collision is finite. In the limit of large 
particle inertia, the energy dissipated is 6npU0a2 (log ho/& - 1.28), where 2Uo is the 
relative velocity of the particles. 

When l~+zac'/~,  we have a free molecular flow in the gap. In this case, owing to 
the curvature of the particles, the flux versus pressure gradient relation is non-local. 
We analyse the free molecular flow between two cylinders and obtain scalings for the 
lubrication force. 

1. Introduction 
The lubrication forces, which come into play when a fluid is squeezed out of a 

thin gap between two surfaces, have an important role in many physical applications. 
Gas-solid flows such as those occurring in pneumatic transport and fluidized beds are 
influenced by the fluid dynamic forces in the gas as well as forces associated with solid- 
body contacts between the particles. In cloud physics applications, the rate of raindrop 
coalescence is of interest (see Ochs & Beard 1985) and this rate is influenced by a 
variety of factors such as the gas dynamic forces, particle inertia, and electrostatic and 
van der Waals forces. The efficiency of particulate removal methods, such as cyclone 
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separation, electrostatic precipitation and filtration, is greatly influenced by the rate 
of coagulation. In all these cases, a detailed microscale study of the lubrication flow is 
essential to an accurate description of the physical process involved. Any such detailed 
study must address the question of why the continuum lubrication forces, which grow 
like l/h with decreasing particle separation h, do not prevent solid-body collisions. 

The absence of such an analysis has resulted in a variety of approximations. Early 
descriptions of raindrop coalescence (Hocking & Jonas 1970) used a cutoff distance 
below which the particles were considered to undergo a collision. This led to an 
underprediction of the rate of coalescence. Models of cyclones which neglect particle- 
particle coalescence underpredict the collection efficiency in the 0.5-20 pm diameter 
range (Bohnet 1983). 

In theories of rapid granular flow (Jenkins & Savage 1983), the particles are assumed 
to undergo solid-body collisions. The loss of energy during these collisions is given in 
terms of a lumped parameter - the coefficient of restitution, e, which is the ratio of 
the relative velocity along the line-of-centres of the particles after and before collision. 
The loss of energy during the collision is typically associated with the inelasticity of 
the particles. However, for sufficiently small particles or for particles colliding with 
sufficiently small relative velocities, the dissipation resulting from the lubrication flow 
in the gas between the particles may become comparable to the loss of energy due 
to the inelasticity of the solid. For particle diameters less than about 100pm, a 
significant part of the energy dissipation is due to viscous forces; for larger particles 
and sufficiently large impact velocities, effects of solid-body inelasticity dominate. 

In theories of dilute gas-solid suspensions (Koch 1990; Kumaran & Koch 1993), 
the dissipation due to lubrication interactions has been neglected compared to the 
viscous dissipation caused by the drag force between particle collisions. However, 
in a dense fluidized bed, the particle separations are always small compared to the 
particle radius and the lubrication losses can no longer be neglected. Moreover, it is 
important to know the rate of energy dissipation in order to determine the stability 
criterion for the fluidized bed. 

1.1. Mechanisms of lubrication breakdown 
For particle separations comparable with the mean free path of the gas, the equations 
of continuum fluid mechanics no longer hold. It is reasonable to expect that the 
breakdown of the continuum will lead to a decrease in the lubrication force. Hocking 
included the first effects of discrete molecular flow in a calculation of the lubrica- 
tion force on a spherical particle, by using the Maxwell slip boundary condition. 
However, the Maxwell slip model is valid only in the limit ho+>lo. Hence, Hocking’s 
analysis alone cannot give quantitative results for the lubrication force at separations 
comparable with lo. Under atmospheric conditions, the mean free path l o  is about 
0.1 pm. In this paper, we present detailed calculations of the lubrication flow for gap 
thicknesses comparable to and much less than the mean free path. 

Another factor which may modify the lubrication force at small particle separations 
is the roughness of the particle surface. While particle roughness is important in 
many practical situations, one may study particles that are smooth on length scales 
comparable to the mean free path. Such a study has the advantage that the lubrication 
flow will not be affected by properties of the particle surface that are difficult to 
measure or control. Even in cases where particle roughness plays a significant role, 
one may ask what causes the breakdown of lubrication flow between the asperities. 

The physical mechanisms modifying lubrication flows between particles colliding 
in a liquid are different from those in a gas. Davis et al. (1986) have studied the 
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elastohydrodynamic collisions between particles suspended in a liquid. Throughout 
these collisions, the particles are separated by a viscous liquid film. The pressure 
forces in this lubrication film are sufficiently large to cause the particles to deform 
and rebound without making solid-body contact. Because of the relatively low 
dynamic viscosity of a gas, the pressure in the lubricating gas considered here will 
not be sufficient to cause significant deformation. Davis et al. used the dimensionless 
elasticity parameter y~ = 8(1 - v 2 ) p  Uo U ~ / ~ / T C E ~ ;  to quantify the tendency of the 
solids to deform. Here, v is the Poisson's ratio, E the Young's modulus, and p the 
viscosity of the fluid. 2U0 is the initial relative velocity of the particles, a the particle 
radius, and ho the separation between the particles. In order to neglect the particle 
deformation when h = ho, the parameter q must be small compared to unity. For 
50pm radius sandstone particles colliding in air at a relative velocity equal to their 
terminal velocity, we can estimate this parameter at a separation ho = l o .  With 
particle density ps = 2.2 gcmV3, p = 0.017 cP, v FZ 0.1, E = 5.7 x 10l1 dyncm-2, 
UO = 35cms-', and ho = 0.1 pm, the parameter q is as small as 1 x Note that 
for 50pm radius particles colliding in air, lubrication forces come into play when 
the separation is around 5pm. Consequently, the use of the terminal velocity at a 
separation of the order of mean free path provides an overestimate of the deformation. 

For sufficiently small particles and low velocities, van der Waals attractions may 
lead to particle contact. However, an estimate of the van der Waals force for silica 
glass spheres of 25pm radius colliding with a relative velocity comparable to their 
terminal velocity indicates that it is a small fraction (on the order of of the 
lubrication force for separations comparable to the mean free path. It may also be 
noted that van der Waals forces are conservative and so cannot modify the singular 
energy dissipation associated with the application of continuum lubrication to all 
particle separations. 

A salient feature of lubrication flows is the large pressure drop that is required to 
drive the fluid out of a thin gap. If this pressure change becomes comparable to the 
atmospheric pressure, then the integral mass balance must be modified to account for 
the effects of the compressibility of the gas. The pressure drop in the gap scales like 
pUu/hi. Thus, it is clear that the effects of compressibility of the gas can be neglected 
for ho+h, = (p~a/po)l/*. 

The relative importance of compressibility and discrete molecular effects may be 
expressed in terms of the dimensionless parameter 01 = h,/;lo, which increases with 
increasing particle radius and relative velocity. For 50 pm radius particles colliding 
with a relative velocity comparable to their terminal velocity, h, is comparable to 
the mean-free path and the effects of compressibility and discrete molecular flow are 
equally important. The effects of compressibility on the collision of particles in liquids 
has been analysed by Barnocky & Davis (1989) and by Kytomaa & Schmid (1992) 
and we plan to consider compressible gas lubrication flows between colliding particles 
in a future publication. 

In this paper we analyse the case of incompressible discrete molecular flows, which 
correspond to the limit a+l. In §2 we analyse the lubrication flow between two 
spheres. In $ 3  we study the lubrication flow between two cylinders. Specifically, 
in $2.1 we show that the lubrication force for two spheres has a weak, log-log 
divergence as the particle separation goes to zero. In 02.2, we calculate the energy 
loss in the collision of two spheres. In the limit of large particle inertia, i.e. high 
Stokes number, the energy lost in the collision is shown to be 67cpa2 (log ho/& - 1.28). 
Numerical results for the energy loss as a function of Stokes number for different 
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FIGURE 1. Schematic showing two spheres of radius a approaching each other along their 
line-of-centres. Here, r is the radial coordinate in the plane normal to the line-of-centres. The 
gap thickness is h(r)  = ho + r2 /a ,  where ho is the minimum separation between the particle surfaces. 

initial separations of the colliding particles are also presented. In 93.1, we study the 
lubrication flow between two cylinders when AoQae'/2. In $3.2, we study the free 
molecular flow between two cylinders. Finally, in 94, we summarize the 
results of this study, and based on physical arguments, we present scalings for the 
lubrication force for colliding spheres in the free molecular flow limit. 

2. Collision of spheres 

In the usual analysis for incompressible continuum lubrication flow between two 
particles, the flow is approximated locally as a pressure driven unidirectional flow 
between two flat plates separated by a distance that changes with radial position 
according to h(r) = ho + r2 /a  (see figure 1). Here, ho is the minimum gap thickness, r 
the radial distance from the line-of-centres of the particles and a the reduced radius 
defined by a = 2ala2/(al + a2), where a1 and a2 are the radii of the two colliding 
particles. (Note that with this definition of a, our results are applicable to collisions 
between unequal-sized spheres as well as particle-wall collisions.) The radial flux 
of the fluid is determined from an integral mass balance. Then the pressure drop 
required to achieve this radial flux is obtained assuming a local Poiseuille channel 
flow in the gap. The lubrication force is then found by integrating the pressure over 
the particle surface. In the case of spheres, this leads to a force that is inversely 
proportional to the gap thickness. If this force were applied at all separations, the 
kinetic energy of the particles would be completely dissipated by viscous forces and 
the particles would not touch in a finite time. Clearly, the familiar incompressible 
continuum lubrication analysis is inadequate. 

Hocking (1973) modified the standard lubrication analysis to include the first effects 
of the discrete nature of the molecular gas in the limit do+ l ,  where 60 E a€/& is the 
inverse Knudsen number based on the minimum gap thickness a6 = ho. This was done 
by using the Maxwell slip boundary condition instead of the usual no-slip condition 
at the particle surfaces. The slip-flow approximation sets the relative velocity at the 
boundary to be proportional to the gradient of the tangential velocity - the constant 
of proportionality being of the order of the mean-free path. That is 

2.1. Pressure profiles and force for  10 

- kl du, 
Ur + - - = 0 on z = f h / 2 ,  

do aZ 
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where kilo is the slip coefficient. For a hard-sphere gas, kl = 1.1081 (Loyalka & 
Ferziger 1967). (It may be noted that the value of the slip coefficient for molecules 
interacting via a non-hard-core potential is close to the corresponding hard-sphere 
value.) Hocking's analysis gives the following expression for the pressure as a function 
of radial distance: 

where the pressure has been non-dimensionalized with 3,uUa/h2, the lubrication 
pressure in the continuum case. Distances in the r- and z-directions are scaled with 
a&" and a6 respectively, and 6 ( r )  = SO (1 + r'). The force acting on each sphere is 
given by 

where the force is scaled with the continuum lubrication resistance 3n,uUa2/h,-,. The 
dimensional force given by the above equation diverges only logarithmically as the 
gap thickness goes to zero. This leads to a prediction of particle contact in a finite 
time. However, Hocking's analysis is valid only for 6081. For sufficiently small gap 
thicknesses, 60 can become an order-one quantity or even smaller. Thus, Hocking's 
analysis alone is not enough to describe the flow in the gap for all particle separations. 

When the gap thickness is comparable to the mean free path (6 = h / &  - l), the 
flow in the gap is governed by the Boltzmann equation: 

where n(x)  is the number density, f is the velocity distribution function and J is the 
nonlinear collision integral. Scaling T with (ae /U) ,  7 with a&/*, Z with ae, and E with 
the mean molecular speed i?, it can be seen that the time-derivative term is O( U/C).  
For incompressible flows, U/i% 1, and hence the time-derivative term can be dropped. 
We now observe that the z-component of the average gas velocity 8, is O(U) .  To 
estimate the size of the radial component 8, of the average gas velocity, we turn to 
the mass conservation equation, which can be derived by averaging the Boltzmann 
equation over the velocity space: 

--(%,) i a  + -(8,) a = 0, 
7 a7 az 

where we have assumed the gas to be incompressible. Using the scalings already 
mentioned for Z, 2, and ii,, we conclude that ii, - Ue-'12. The scalings up to 
this point are similar to the familiar scalings in the continuum lubrication problem. 
However, when we have significant rarefaction (6 - l), we cannot use the continuum 
Navier-Stokes equations. Instead, we must solve for the velocity distribution function, 
from which all macroscopic quantities of interest can be calculated. In general, the 
nonlinear Boltzmann equation (2.3) is difficult to solve. 

For nearly incompressible flows (U/Ea  l), we can linearize f by writing 7 = 70( l+q), 
(I 41 Q l), where 

In order to estimate the size of 4, we observe that, by mass conservation, the 
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macroscopic gas velocity in the radial direction is O(e-'/2) larger than that in the 
z-direction. In other words 

from which it is clear that 6 - U/Ce1/2. Thus, the Boltzmann equation can be 
linearized if U / z ~ e l / ~ .  

Before we write the linearized Boltzmann equation, it will be useful to obtain 
scaling estimates for the variation of number density in the r- and z-directions. For 
this we use the following momentum conservation equation: 

apii 
- + V . ( p i i i i )  = V . 8 ,  a't 

where p is the mass density and 6 = -JTEEdE is the stress tensor. We now non- 
dimensionalize 8 with pE2 and use cylindrical coordinates (r,O,z). It can be seen 
from the scaled r-component of the momentum equation that the inertial terms are 
O(U2e-'/2/E2). Using 4 - Ue-1/2/Eal, we can neglect the inertial terms from the 
r-momentum equation. By a similar argument, the inertial terms in the z-momentum 
equation can also be neglected. Now, using f = f ~ ( l  + q), 4 = U E - ~ / ~ ~ / E ,  the 
r-momentum equation can be written as 

From this, we conclude that the radial variations in the number density are O(nU/Ee). 
Similarly, the z-momentum equation can be written as 

Hence we conclude that the O(nU/ze'/2) number density variations in the z-direction 
can be neglected, compared to the O(nU/Ee) variations in the r-direction. 

The linearized Boltzmann equation takes the form 

where 
linearized boundary condition holds at the surface of each particle : 

is the linearized collision operator. Assuming diffuse reflection, the following 

7 = yo (1 + kT " >  E . U 

where U is the velocity of the particle, dS denotes the particle surface, and n is the 
unit outward normal to the surface. In terms of 4, this can be written as 

- r n  4 = -  P . U  o n a s ,  E . n > O .  
kT 

Using the scaling for 4, this can be written as 
71 

d, = c - e, on as, c n > 0, 

where we have written U = fUe, for the velocity of the top and bottom spheres 
respectively. Hence we conclude that, to leading order, Cp is zero on the particle 

8 
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surfaces. This is equivalent to saying that, to leading order, the molecules emitted 
from the surface have a distribution 70. We now observe that L& scales like @ / l o ,  
and rewrite (2.6) accordingly: 

I Ee 1 dn a4 
U n dr a Z  lo 

c, +c,- = -L4, 

where we have dropped the radial derivative of 4, which is O(e'l2) smaller than the 
other terms. Equation (2.7) represents the pressure-driven flow of a rarefied gas in a 
channel. Hence, the flow in the gap can be approximated locally as a Poiseuille flow 
between two flat plates - as is done for the continuum lubrication problem. 

Hickey & Loyalka (1990) have solved the linearized Boltzmann equation for the 
pressure-driven flow between two flat plates. In addition to this exact calculation, 
there are calculations which solve an approximate form of the Boltzmann equation 
(for example, Cercignani & Daneri 1963). The results of Cercignani & Daneri are in 
good agreement with the solution of Hickey & Loyalka. We shall use the results of 
Cercignani & Daneri, because their calculations provide results for the flux due to 
a given pressure gradient over a wider range of inverse Knudsen numbers 6. These 
results for the transition regime (6 - 1) flux, along with the flux corresponding to the 
limit of small 6, derived in the Appendix, will then be used to obtain the pressure 
profiles and to compute the force acting on the particles. 

For very small gap thicknesses h o ~ l o ,  one might expect the flow in the gap to be 
governed by a Knudsen diffusion of the gas molecules between the particles (approx- 
imated locally as two flat plates). However, an attempt to calculate the Knudsen 
diffusivity for pressure-driven flow between two flat plates leads to a logarithmically 
divergent integral. This divergence is due to molecules which travel large distances 
nearly parallel to the walls. The divergence may be removed by the inclusion of 
one of two physical effects: (i) A molecule that travels a distance of the order of 
A. undergoes an intermolecular collision and is likely to be driven to the wall in 
a short, O(ae) distance. A derivation of this 'pseudo-Knudsen' flux is given in the 
appendix. (ii) If the molecule travels a distance comparable to d2, the curvature of 
the particles will become important and the molecule's flight cannot be approximated 
as a flight between two flat plates of infinite extent. The spatial variations in the 
pressure gradient also become important in this case. 

Either of the two physical effects described above can be important depending on 
the relative size of the mean free path l o  and the length scale ae'12 on which curvature 
becomes important. When l~+->ae' /~ ,  we have a free molecular flow in the gap. In this 
case, we have 

In $3, we illustrate the nature of free molecular flow ( I l~+-ue ' /~ )  by studying the 
collision of cylinders. 

The computation of the lubrication force proceeds as follows. For small 6, we use 
the pseudo-Knudsen flux derived in the Appendix, along with the transition-regime 
(6 - 1) numerical data for flux from Cercignani & Daneri (1963), to obtain the 
pressure profiles. We then combine these with the expression for pressure given by 
Hocking (1973), which is valid for ae+-&,, to obtain the pressure as a function of the 
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radial distance for all gap thicknesses. Using this pressure profile, we obtain the force 
acting on the particles as a function of minimum gap thickness. 

The expression relating the flux to the pressure gradient is obtained from the 
following integral mass balance equation: 

_ _  ( r / T 2 u r d z )  = 2 ,  
dr -h /2  

where x(r)  = 1 +r2 is the scaled gap thickness. If no is the equilibrium number density, 

then the flux, q(r) ,  scaled with noEc-'/2 is given by q(r)  = (U/C)( l /~)J+'~~ur  - dz. 
Making use of the fact that the flux is finite at r = 0, 6 = h/&, and integrating (2.9), 
we obtain 

(2.10) 

If the pressure profile is linear on the length scale of the mean free path, the flux is a 
function of the local pressure gradient. This will be true as long as A o ~ a d / 2 .  Hence 
the flux can be written as 

(2.11) 

where g(6) is a dimensionless factor which depends on the geometry of the flow region 
and on the relative size of the mean free path and the gap thickness. The function 
g(6) is given by 

a (-log6 +0.4513) ( 6 ~ 1 )  

[ 5 6 + 0.4502 

(2.12) 

where the function V ( 6 )  has been tabulated by Cercignani & Daneri (1963)t. The 
expressions for g in the limits 6 Q 1 and 6 b 1 are asymptotic and this makes Cercignani 
& Daneri's computed values of g at the cutoff points (61, 62) slightly different from 
those given by the corresponding asymptotic expressions. Hence we have used a 
curve fit to effect smooth transitions across the different regimes. The solid line in 
figure 2 is the smooth curve for g used in our calculations. The dotted curves are 
the asymptotic expressions for g in the pseudo-Knudsen and slip-flow regimes. In 
the transition regime, the difference between the computed values of Cercignani & 
Daneri and our fitted curve is so small as to make them indistinguishable in this plot. 

Using (2.9) and (2.10), and scaling p with the continuum lubrication pressure 
3pUa/h2, we obtain 

(2.13) 

The pressure profiles plotted in figure 3 are computed using the curve fit for g(6) 
and integrating the above expression numerically. However, to facilitate subsequent 
asymptotic analysis of the force resisting motion, we also use the expression (2.12) 
for g(6) to obtain analytical expressions for the pressure in the various regimes. For 

t In the notation of Cercignani & Daneri, the function (n/4'l2) V(n6/2'/ ') is denoted by Q(6).  
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6 
FIGURE 2. The function g(6) appearing in the expression for flux. The solid line is the smooth curve 
used in our calculations and the two dotted curves are the asymptotic expressions in the two limits 
6 8 1  and 6*1. 

this purpose, we choose 61 = 0.1 as the cutoff for pseudo-Knudsen flux and 6 2  = 10 
as the cutoff for the transition regime flux, and thus obtain 

where 6 = 60 (1 + r 2 ) ,  6 = log( 1/6) - b , and b = -0.4513. The quantities p1 and p2 
are related to the pressure drops over the transition and slip-flow regimes respectively. 
The expressions for p1 and p2 are 

P1 = - 

where r1 and r2 are the radial distances at which the inverse Knudsen number 6 
attains the values 0.1 and 10.0 respectively. That is, ri (i = 1,2) are defined for J j  > 60 
by ri = (6[/60 - l)1'2. 

The pressure profiles are plotted in figure 3. The abscissa is the non-dimensional 
radial distance. The ordinate is the pressure non-dimensionalized by the continuum 
lubrication pressure at the same radial position. The different curves are for different 
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r 
FIGURE 3. The pressure in the gap as a function of the radial distance for various non-dimensional 
minimum gap thicknesses: -, do = 0.01; ---, a0 = 0.1; ----, a0 = 1.0; ---, 60 = 5.0. The pressure 
is scaled with 3pUa/h2, where h(r) is the gap thickness. The radial distance is scaled with ad”. 

inverse Knudsen numbers do, based on the minimum gap thickness. As one would 
expect, the pressure approaches the continuum value as the gap thickness increases. 

The force resisting the relative motion of the two particles is found by integrating 
the numerically obtained pressure profiles across the particle surface. Before discussing 
the results of our computation, it is of interest to obtain an analytical expression for 
the force, using (2.14). For this, we non-dimensionalize the force with 3n,uUa2/ho, 
which is the incompressible continuum lubrication resistance for the normal motion 
of two spheres. The non-dimensional expression for the force is 

where 
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We note that the force on the particle diverges like loglog(l/60) in the limit 
~ e 4 1 2 ~ 4 a e ' / ~ .  The energy dissipated, is thus controlled by the case ae 2 O(120). 

In figure 4(a), the non-continuum lubrication resistance (2.15) is plotted as a 
function of inverse Knudsen number 60. The force is non-dimensionalized with 
3zpUa2/ho, so that the ordinate 1 on the plot corresponds to the incompressible 
continuum lubrication resistance. It can be seen that, as required, the non-continuum 
lubrication force approaches the continuum lubrication force for large gap thicknesses. 
From this plot it can also be seen that the force due to a non-continuum flow is 
less than that due to a continuum flow. However, the non-continuum force given by 
equation (2.15) is still divergent as 6 -+ 0. This divergent behaviour is not apparent 
in this plot because of the particular non-dimensionalization for force that we have 
chosen. 

In figure 4(b), the lubrication resistance scaled with 37cpUa2/;lo is plotted as 
a function of 60. The lower curve (solid line) is the lubrication resistance for 
the incompressible non-continuum case. The dotted curve is the usual continuum 
incompressible lubrication resistance. The continuum lubrication force diverges as 
1/60, while the non-continuum lubrication resistance diverges only like log log( 1/60). 
The weaker divergence can be observed in this plot. 

Our results for the force, together with those of Ying & Peters (1989), who solved 
for the relative mobility of two spheres for small but finite values of the Knudsen 
number Kn = &/a,  can be used to obtain the relative mobility over the full range of 
separations. It may be noted that while the results of Ying & Peters are applicable 
for ho+Ao with no restriction on hala, our results hold for h o ~ a  with no restriction 
on ho/Lo. 

In principle, (2.15) can be used to compute the force for any particle separation. 
However, it is quite cumbersome and is in a form that entails considerable compu- 
tational cost - especially so for dynamic simulations of hydrodynamically interacting 
particles. We give below a simple fit for the actual force expression, accurate to within 
2% of the actual force and continuous for all values of 60: 

ffit = ' 

+2.587 So2 + 1.419 60 + 0.3847 

-1.378 x do5 + 2.199 x 604 (60 < 0.26) 

-0.1359 aO3 + 0.4146 aO2 - 0.6867 do + 0.754 (0.26 c do < 5.08) (2.16) 

-1.182 x 1 0 - ~  aO3 + 3.929 x 1 0 - ~  do2 

-5.017 x 60 + 0.3102 (5.08 < 60 < 10.55) 

2.2. Collisional dynamics 
We now turn our attention to finding the fractional energy loss in a particle collision. 
Davis (1984) has shown that van der Waals attractions can be important in promoting 
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RGURE 4. The force on the sphere as a function of the non-dimensional minimum gap thickness 
60. (a) The force is scaled with the continuum lubrication resistance. (b )  The force is scaled with 
37rpUa2/& so as to make the weaker divergence of the non-continuum force evident. 

the gravity-induced coagulation in polydisperse aerosols with particle radii less than 
about 20 pm. In our analysis, we include only the lubrication resistance. However, 
the short-range van der Waals forces can be easily included in the analysis. 

In describing particle collisions, it is customary to express the energy lost in the 
collision in terms of a coefficient of restitution e. The coefficient of restitution is 
defined as the ratio of the particles’ relative velocity after collision to the velocity 
before collision. Let us consider the collision of two spheres with velocities +V.  The 
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motion of the particles is governed by the equations 

dU 
dz 

m- = -F 

and 

295 

dh 
- = 2 u .  
dz 

with the initial conditions that at z = 0, U = UO and h = ho. F is the lubrication 
resistance, U is the speed of the particle, m is the mass of the particle and the instant 
z = 0 corresponds to a gap thickness ho at which lubrication becomes effective. Jeffrey 
& Onishi (1984) have tabulated the resistance and mobility functions for two spheres 
in Stokes flow. From their calculations, one can identify the particle separation at 
which the force calculated using a series appropriate for small separations deviates 
from an asymptotic value appropriate for widely separated particles. This could then 
be taken to be the separation at which lubrication forces come into play. Though 
this choice depends on the criterion adopted to identify the deviation, it is not critical 
to the calculation of energy dissipation and we have chosen to introduce lubrication 
forces when the gap thickness is O.la. 

We now non-dimensionalize the velocity with the initial particle velocity UO, the 
gap thickness h with ho, and the time z with ho/Uo. Since the motion of the gas is 
quasi-steady, the force is proportional to the instantaneous velocity. In other words, 
the force F is given by 

where u is the dimensionless velocity and f is the dimensionless force given by (2.15). 
With these scalings and 60 = h o / l o ,  we obtain 

(2.17) 

where St = mUo/3npu2 is the Stokes number, which measures the relative importance 
of particle inertia and viscous dissipation, and t is the dimensionless time. The 
initial conditions are that at t = 0; u = -1 and 6 = 60. The above equation 
has two parameters - St and 6 0 .  Now, the significant particle size range in cloud 
physics applications is l(r100 pm (Hocking 1973). Moreover, the mean-free path is 
approximately 0.1 pm. Thus, with ho = O.lu, the values of 60 that are of practical 
interest range from 10 to 100. 

Equation (2.17) can also be written as 

du -1 f _ -  
d6 2St 6 '  

(2.18) 

The velocity of the particles can be determined as a function of gap thickness by 
integrating (2.18). For moderate or large Stokes numbers, the velocity will be non-zero 
when the particles come into contact. If we assume that the actual solid-body collision 
is perfectly elastic and continue the integration for the particle rebound using (2.18), 
we can determine the fraction of the particle energy that is lost during a collision and 
rebound in which the initial and final particle separations are 0.1~. This fractional 
energy loss, 1 - e2, is 

(2.19) 
1 1 - e2 = - 1 - - (log60 - 1.28) (logdo - 1.28), 

S t  ( 2St 
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where e is the coefficient of restitution resulting from viscous forces. Equation (2.19) 
applies only when St > (log60 - 1.28). For smaller values of the Stokes number 
the particles’ relative motion is arrested before their separation returns to 0.1~. The 
fractional energy loss up to the point of impact, 1 - el2, is given by 

1 
1 - elz = - 1 - - (log& - 1.28) 

St ( 4St 

It may be noted that the leading behaviour of the fractional energy loss calculated 
by applying Hocking’s result for the lubrication force to all particle separations is 

1 
1 - e = - 1 - -(log60 - 1.28) (loga0 - 0.12) , St ( 2St 

which is larger than that given by (2.19). This is due to the relatively strong divergence 
of the force given by Hocking’s analysis. 

3. Collision of cylinders 
3.1. Transitional flow 

In the previous section, we analysed the incompressible lubrication flow between two 
spheres in the limit &aae’/2. Our aim in this section is to study the incompressible, 
non-continuum lubrication flow between two cylinders. We first analyse the flow 
between two cylinders in the limit at-aAoaat-’/2and then study the free molecular flow 
between cylinders. 

Consider the normal motion of two equal-sized cylinders of radius a (figure 2). 
When &oBae1/2, the collision of unequal-sized cylinders can be treated by defining 
a = 2ala2/(al +a*) ,  where a1 and a2 are the radii of the cylinders. The speed of 
each cylinder is U and as before, ho = ae denotes the minimum gap thickness. The 
coordinate along the flow direction is x and that along the length of the cylinder 
is y. All distances in the x- and y-directions are scaled with and those in the 
z-direction are scaled with at-. The number density of molecules in the bulk is given 
by and po is the corresponding atmospheric pressure. 

Since the geometry along the flow direction is the same for a sphere and a cylinder, 
we have the same asymptotic scalings for the pressure in both cases. The starting 
point, as before, is the integral mass balance equation. For cylinders, we have 

+L/2 & LLI2 Uxdz = 2 .  

The rest of the analysis is similar to what we described for the case of spheres 
(see 92). The non-dimensional expression for the pressure is the same as (2.14), 
with the only difference that the pressure is now scaled with 6pUa/h2, which is the 
continuum lubrication pressure for cylinders. It may be noted that, while the pressure 
is proportional to l /h2  for both spheres and cylinders, the centreline pressure in the 
case of cylinders is twice that for spheres. Owing to cylindrical geometry, there is a 
net flow only in the x-direction. Thus, to drive the same mass flux, the pressure at 
the centreline is larger than that for spheres. 

The lubrication force per unit length of cylinder can be found by integrating the 
pressure over the surface of the cylinder. Scaling the force with its continuum value 
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we obtain the force to leading order to be 
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This is valid in the limit ~ e 4 & 4 a e ’ / ~ .  The non-continuum lubrication force has 
a much weaker divergence than the continuum force because the pseudo-Knudsen 
pressure scales like r-’/log(&/ac), as opposed to r-2 in the continuum case. 

3.2. Free molecular flow 
In this section we consider the free molecular lubrication flow due to the normal 
relative motion of two cylinders. The velocity of the cylinders is +U. The ambient 
number density is no. The mean free path A~+,ae ’ /~ .  We consider the case of small 
Mach numbers, i.e. M = U/E41. 

over which the 
effects of curvature become important, the flow in the gap can be treated as a free 
molecular flow. When the mean free path is of the same order as the flux 
through a given cross-section depends on the number density of molecules at other 
points on the surface. This leads to an integral equation for the flux. As mentioned 
previously, the cases & + ~ e ’ / ~  and & - O ( U ~ ’ / ~ )  do not contribute significantly to the 
energy dissipated in the collision. However, to illustrate the nature of this regime, 
we study the free molecular flow between two equal-sized cylinders. A calculation 
similar to the one detailed below may be performed for the case of colliding spheres, 
although the analysis would be much more complicated. 

An equation for the number density can be obtained by observing that, at each 
point along the cylinder surface, the number of molecules coming in is equal to the 
number leaving. Another equivalent approach is to consider the net molecular flux 
out of the gap at any cross-section and equate it to the macroscopic flux set up by 
the relative motion of the spheres. As can be seen from figure 5, the molecular flux 
through any given cross-section is composed of two parts - one due to molecular 
exchange between the surfaces and the other due to molecules that escape to the 
bulk without colliding with a particle surface. We will refer to the latter as the ‘direct 
contribution’ to the flux through the gap at any given cross-section. We first consider 
this direct contribution and then combine it with the contribution to the flux coming 
from molecular exchange between surfaces. These in turn will be used to derive 
results for the pressure profiles and the force resisting motion. 

3.2.1. Direct contribution to molecular flux 
Before we proceed to calculate the contribution to the flux coming from molecules 

which escape directly to the bulk, we note that, for points on the cylinder such that 
1x1 > x, > 0, where +x,  denote the points of common tangency of the cylinders, 
there is no flux to -sgn(x) 00 (see figure 5) .  Moreover, molecules emanating from any 
given point on the bottom surface can reach only the portion of the top surface that 
is not shielded from the point under consideration. For example, molecules leaving 
the bottom surface at x’ in figure 5 can only fly to points between x i  and x!+ on the 
top surface. 

In order to find the point of common tangency of the cylinders, we first write the 
equation of the tangent to the top cylinder (centred at (0,l + r / 2 ) ) ,  from a point 
(x’,z’)  on the bottom cylinder. The required equation is 

(3.2) 

When the mean free path is much larger than the distance 

x2 - xx’ + r ( 2 2  - zz’)  = (1 + €/2) ( z  - z’) , 
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FIGURE 5. Schematic used in the analysis of the free molecular flow between two equal-sized 
cylinders. The angle between the normal to the bottom cylinder and the tangent to the top cylinder 
is denoted by 4,. The abscissas of the points of common tangency are given by fx,. There is a 
flux to both +a, and -a only for -x, < x < +x,. 

which represents a pair of straight lines. Retaining only the O(1) terms in the above 
equation and using lzl = (1 + x 2 ) / 2 ,  we obtain a quadratic equation for x, the solution 
of which is 

Here, x i  denote the x-coordinates of the points of tangency. From the above equation, 
it can b< seen that the point of common tangency occurs at +x,, where x, = 1. 

The net number of molecules leaving dx’, per unit length of the cylinder, per unit 
time is given by 

(3.3) x k = x ’ + [ 2 ( 1 + x  ‘2 )] 1/2 . 
- 

do+ = (n(x’) - no)ae’/2dx’ f(c)c - ndc . J 
Hence, the molecular flow rate to +a, per unit length of the cylinder, is given by 

o+(x) = l : ( n ( x ’ )  - no) dx’ 1: dc, dmln” f(c,, c,) c; cos 4 dc, d+ , (3.4) 
1 

Here, c is the molecular speed, + is the angle between the normal to the bottom cylin- 
der and the direction of flight of the molecule, and f(c,,c,) is the usual Maxwellian 
velocity distribution written in appropriate cylindrical coordinates : 

) .  
m -m(cP2 + ci) 

f(c@, ‘ y )  = (m) 3’2 exp ( 2kT 

On carrying out the integrals over cp, c,,, and 4 in (3.4), we obtain 
I rx 

Q+(x) = A J v(x’) (1 - sin &(XI)) dx’, 
8 -1 

where i? = ( 8 k T / m 1 ) ‘ / ~ ,  v(x) = (n(x) - no)/no, and we have scaled the flow rate per 
unit length with 
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From the definition of 4, it is clear that cos 41 = nb e,, where nb is the unit normal 
to the bottom cylinder and e, is the unit tangent to the top cylinder. We have 

nb = e, + ell2 x’ ex + ~ ( e ) ,  

x+ e, + O(E) ,  

and 
112 I 

where e, and ex are the unit vectors in the z-  and x-directions respectively. This yields 
cos NN e1I2(x’ + x:). Using this in the expression for the flow rate and accounting 
for both cylinders, the flow rate to +co becomes 

e, = ex + e 

Q+(x) = f /” v(x’ )  (x’ + x;)’ dx’ . 
8 -1 

Similarly, the contribution to the molecular flow rate due to molecules going to -co 
can be written as 

+1 

Q-(x) = -- 8‘ I v (x ’ )  (x’ + x ’ _ ) ~  dx’, 

where the negative sign in front of the integral indicates that the molecules going to 
-co give a negative contribution to the overall flux. 

Using these, the direct contribution Q d  to the overall flow rate Q through any 
cross-section can be written as 

= Q+(x)  H ( x  + 1) + Q-(x )  H ( 1 -  x) , (3.5) 

where H ( x )  is the Heaviside step function and 

Q + ( x )  = i: v (x ’ )  (x’ + x!,.)~ - dx’, 

12 112 . with x!+ - = x’ +_ [2(1+ x )] 

3.2.2. Exchange contribution to the molecular f lux 
In this section, we calculate the contribution to the overall flux through a given 

cross-section across the gap due to molecular exchange between the two surfaces. 
This contribution will henceforth be referred to as the ‘exchange contribution’. 

In discussing the direct contribution to the flux, we observed that, owing to the 
curvature of the particles, a cone of light emanating from a point on the bottom 
surface will illuminate only a portion of the top surface. This geometric constraint 
was used to determine the cutoff points for the direct contribution to the flux. We 
will similarly determine the cutoffs for the exchange contribution. 

For any given x on the bottom cylinder, there is an exchange between the surfaces 
only for 5 such that the point x + 5 on the top surface is visible from x. In other 
words, the exchange contribution is cut off when the line joining the points x and 
x + 5 becomes tangential to either surface. Looking at figure 5, it becomes clear 
that, whenever x < xm (for any 5) or x > x m  ( 5  > 0), this cutoff occurs when the line 
drawn from x is tangential to the top surface at x + 5+. Substituting x + (+ for x+ 
in (3.3), we obtain 5+ = *[2(1 + x2)]’I2, where the positive and negative signs apply 
for 5 > 0 and 5 < 0 respectively. When x > x m ( 5  < 0), the tangent to the bottom 
surface separates the top surface into regions visible and invisible as seen from x. 
Thus, setting x+ = x and x’ = (x + 5,) in (3.3), we obtain 

5,‘ + 4x<, + 2 (1 + x2) = 0 . 
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This can be solved to yield 5, = -2x + [2 (x2 - l)] 112, where we have retained only 
the physically meaningful root. 

The net number of molecules emitted per unit time, from a point (x’,y’,z(x’)) on 
the bottom cylinder and reaching the top surface at (x”,y”,z(x”)), is given by 

dQe = QE dx’ (n(x‘) - n(x”)) c . nb f(c) C2dC , b“ 
where n b  is the normal to the bottom surface. Introducing e, = c/c, integrating over 
c, and scaling Qe with wlae’/2, this can be written as 

dQe = dx’ (v(x’) - v(x”)) 152 nb(X’)lda , 

where v(x) = (n(x) - no)/% as before, and d52 is the solid angle subtended by the 
area element at the point of interest. Using e, = r/jrl, and dO = dx”dy”lnt(x”)*r1/r3, 
where r = x’’ - x‘, the flow rate of molecules crossing the cross-section from left to 
right at x per unit length in the y-direction can be written as 

The cutoff limits tmX and emin are given by: &- = [2 (1 + x2)I1I2, {mi” = -2x + 
[2 (x2 - 1)]1’2 for x > xm and &,,in = -[2 (1 + x’)]’’~ for x < xm. 

In addition to the molecules crossing the cross-section from left to right, giving a 
positive contribution to the net flux in the positive x-direction, there are molecules 
which travel from right to left, thereby giving a negative contribution to the flux. This 
contribution can be written as 

where the negative sign in front indicates that Qe- provides a negative contribution 
to the overall flux. The net flow rate in the positive x-direction, per unit length of 
cylinder, is given by 

where Qe+ and Qe- are as discussed above. 

The result is 

Qe = Qe+ + Qe- 3 

For future use, it is convenient to differentiate this expression with respect to x. 

dQe - =A1 + A &  dx (3.7) 
where 

and r2 = (x - x ” ) ~  + = x” - x, 
h = z(x”) -z(x). Using Iz(x)l = $(l +x2), we can write h = 1 + i(x2 +(x + t;)’). Using 
these, and carrying out the integral involving y, we obtain 

+ e(z(x) - z(x”))~. For convenience, we define 
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where G(x, 5 )  = Ih + x5115(x + 5 )  - hl. It may be noted that, owing to symmetry, only 
positive values of x need be considered. 

The total flow rate Q(x) = Qd(x) + Qe(x), where Qd and Qe are as discussed above. 
We can write 

dQ-dQd  dQe +-, dx dx dx (3.9) 

where 

(3.10) dQd 
dx 8 
- = - v(x) [H(x + 1) (x + x+)2 + H(1 - x) (x + .-)’I , 

dx [ 5 2  + €( 1 + x2)2] 3/2 ’ 

and 

(3.11) 

where we have approximated h as 1 + x2. This is valid because the term e( 1 + x2)2 in 
the integrand above becomes important only when 5 4 1. 

-=-$ dQe l r d t  [v(x + 5 )  - v(x)l G(x, 5 )  

We now define 

dv t2 d2v 
dx 2 dx 

v(x + t) = v(x) + 5 -  + -2 + R(x,t) .  

Using this in the expression for dQe/dx and carrying out the integrals, we obtain 

e - dQe - - -- ( A + B + C + D ) ,  
dx 4 

where 
1 

A = J l ( X )  log - , 
e 

with 
dv 2 2d2v 

J l ( X )  = 2x(1 + x2)- + i(l+ x ) -, 
dx dx2 

and 
R(x, t ) w, 5 ) 

1513 
D = s(.y d t  

tmi. 

Note that the term A represents the singular part of the number density. It can also 
be observed that the leading behaviour of the number density is O( 1/e log( l/e)). This 
results in a force that scales like (a/A~)e-’/~/ log( l/e). In the pseudo-Knudsen limit, 
;lo 4 d 2 ,  the force scales like (a /A~)e - - ’ /~ /  log(Ao/ae), while the continuum lubrication 
resistance scales like l/e3l2. 
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3.3. Pressure and force profiles 
In order to solve for the number density (and hence, the pressure), we equate the 
free molecular flow rate derived above to the flow rate obtained by an integral mass 
balance across the gap. The flow rate is given by 

Q(x> = no Lhl2 ili,(z)dt. 
hl2  

From the mass conservation equation we obtain 

where U is the velocity of each cylinder. Combining this with (3.9), we obtain 

~ v ( x )  [H(x + l)(x + x + ) ~  + H(l  - X)(X + X-)'I - ( A  + B + C + D )  = 1, (3.12) 

where we have now rescaled V ( X )  with 8U/Te. The above equation is solved using 
a finite difference scheme. The boundary conditions are that the number density 
approaches the bulk number density far from the particles and that n(x) is symmetric 
about x = 0. Using the pressure profiles so obtained, we can perform a numerical 
integration over the cylinder surface to obtain the force resisting relative motion. 
The result of this calculation is plotted in figure 6. For 1-100pm radius particles 
colliding in air (A0 = O.lpm), the values of E. for which we have a free molecular flow 
range from 10-4-10-8. Here we have scaled the force with 27~~pU(a/lo)e-'/~/ log(l/e), 
which is the asymptotic behaviour of the force as the particle separation goes to zero. 
The correction to this leading behaviour is smaller by an O(l/log(l/e)) factor. It 
is interesting to note the similarity of this leading behaviour with that in the limit 
ae<Ao4ae1/2. In both cases, there is a factor of the form ~-'/~/log(r,/ae), where 
r, is a cutoff distance for the molecular flux. In the pseudo-Knudsen regime, this 
cutoff is the mean free path l o .  In the free molecular flow case, the molecules travel 
a distance O(UE. ' /~ )  before undergoing any collisions, making the cutoff length. 
This suggests that the force scaling for free molecular flow between spheres is similar 
to that given by our pseudo-Knudsen regime analysis, except that A0 is now replaced 
by Thus, we conclude that, for spheres, the free molecular lubrication force 
diverges like log log( l/e). 

4. Conclusions 
In this paper, we have studied the incompressible lubrication flows between two 

spheres. We have also analysed the nature of the lubrication resistance for the case 
of two cylinders. By making certain approximations which are valid when we have a 
lubrication flow and when the Mach number is small, we have been able to analyse 
the leading behaviour of the lubrication resistance for all particle separations. 

When ae4Lo<ae'/2, we have shown that the force resisting the normal motion 
of two spheres has a rather weak loglog(Ao/ae) divergence with decreasing parti- 
cle separation. In deriving this result, we used an asymptotic expression for the 
pseudo-Knudsen flux derived in the Appendix. This pseudo-Knudsen flux has a loga- 
rithmically large contribution from molecules that travel large distances (- A,) nearly 
parallel to the channel walls. We have derived the leading logarithmic behaviour as 
well as the O(1) correction to it. Prior to our analysis, there have been many studies 
which have obtained the leading logarithmic behaviour. Our calculation provides 
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& 

FIGURE 6.  The force on each cylinder in the free molecular lmit & + > a ~ ' / ~ .  The force is 
the leading behaviour in the free molecular case, so that as E goes to zero, the force 
unity. 

scaled with 
approaches 

an analytical expression for the flux valid in the high Knudsen number limit. The 
available approximations are in good agreement with our exact result. 

We have also shown that, for large particle inertia, the fraction of the to- 
tal energy dissipated by viscous forces during a collision between two spheres is 
( 2 / S t )  (logAo/ho - 1.28), where St = mUo/3npa2 is the Stokes number. This allows us 
to deduce the critical Stokes number below which the particles lose all their kinetic 
energy before bouncing back to their initial separation. The criterion for such a 
sticking is St > (log(Ao/ho) - 1.28). 

The mobility of two spherical particles moving towards each other is often required 
in theoretical and numerical studies of a suspension of hydrodynamically interacting 
spherical particles. However, results for the mobility were not available previously 
over the entire range of particle separations. Ying & Peters (1989) have provided 
results for / l o ~ a e ,  with E - O(1).  These results together with ours for e+l  with 
af/Ao - O( 1 )  enable the calculation of mobility for all separations. 

In 9 3 ,  we analysed the flow between two cylinders. When & + U E ' / ~ ,  the flow 
field is locally the same for sphere-sphere and cylinder-cylinder collisions. Hence 
the scalings for the flux and the pressure profiles are the same in both cases. For 
cylinders, with se arations such that ar+Ao+a~' /~ ,  the lubrication force scales like 
7 ~ ~ p U o a ~ / ~ / ( A o  h i /  log(Ao/ho)), which is weaker than the h0-3/2 divergence seen in the 
continuum case. 

We have also analysed the free molecular flow between cylinders, corresponding 
to A ~ + u E ' / ~ ,  and obtained results for the force. When ,Io~->ae'/~, the nature of the 
flow in the gap is vastly different from that for a ~ - & o ~ a c ' / ~ .  In this free molecular 
flow case, the relationship between the flux and the pressure gradient is no longer 
local. The leading behaviour of the force in this case is 27r2pU(a/A~)~- ' /2 /  log( l / e )  
and the pressure scales with e-'/log(l/e). The asymptotic scalings for the force 
corresponding to the pseudo-Knudsen and free molecular regimes can be cast in 
the form n2pU(a/ iZo)~-' /2/  log(r,/ac), where rc is a cutoff distance for the molecular 

4 
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flux. In the pseudo-Knudsen regime, the flux is cut off by the mean free path ( r ,  = 
Lo,aedoaae1/2). When Lo$ae1I2, the flux is cut off by the curvature of the particles, 
leading to rc = These observations allow us to deduce that, for the collision 
of spheres, the free molecular lubrication force diverges like (cf. equation (2.15)) 
7r2pU(a2/2&) log log( I/€). 

This work was supported by the US Environmental Protection Agency under 
grant number R81-9761-010. Preliminary work on this problem was conducted 
in collaboration with Srinivasan Rengaswamy, a Masters student under D. L. K.’s 
supervision. 

Appendix. Molecular flux in Poiseuille channel flow 
The pressure-driven flow of a rarefied gas in a channel has been studied extensively 

(Hickey & Loyalka 1984; Cercignani & Daneri 1961, to cite a few examples). These 
studies have concentrated primarily on the cases h - LO and h+&, where h is the 
channel width and ;lo is the mean free path. While these studies have also established 
the leading behaviour of the flux in the limit h 4 0 ,  a direct, analytical derivation - 
based on simple physical reasoning - has been lacking so far. In this Appendix, we 
derive the leading logarithmic behaviour of the flux, and the 0(1) correction to it. 

For very small gap thicknesses ho-do, one might expect the flow in the gap to be 
governed by a Knudsen diffusion of the gas molecules between the particles (approx- 
imated locally as two flat plates). However, an attempt to calculate the Knudsen 
diffusivity for pressure-driven flow between two flat plates leads to a logarithmically 
divergent integral. This divergence is due to a large contribution to the flux through a 
given cross-section, coming from molecules that travel a large distance nearly parallel 
to the channel surface. If the molecule travels a distance comparable to the mean 
free path, it will undergo an intermolecular collision. This collision is likely to yield a 
velocity that is not nearly parallel to the walls and hence the molecule will be driven 
to the wall in an O(h0) distance. The result is a flux that is similar to that given by 
Knudsen diffusion, but with a ‘pseudo-Knudsen diffusivity’ that is proportional to 
i? ho log(Lo/ho) instead of Fho, where i? = (8kT/~rn)’ /~ is the mean molecular speed. 
(Here k is the Boltzmann constant, T is the temperature of the gas and m is the 
molecular mass.) 

A.l. Flux versus pressure gradient relation for ae40Qae1/2 
Consider the isothermal, pressure-driven flow of a gas in a channel made of two 
parallel plates of infinite extent separated by a distance h, as shown in figure 7. The 
gas molecules are hard spheres of mass m and the temperature is T. In order to 
derive the ‘pseudo-Knudsen flux’, the gas is assumed to be only slightly perturbed 
from its equilibrium Maxwell distribution f(c). This will be true for small values of 
the pressure gradient such that, in the region of interest, 

Idnldxl $ A o *  
ld2n/dx21 

The gas flow is in the x-direction. The number density, n(x), may be approximated 
locally as a linear function of x: 

dn 
dx 

n(x) = no + - x .  
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F~GLJRE 7. Schematic used in the derivation of the pseudo-Knudsen flux due to a pressure-driven 
flow in a channel. The two flat plates are separated by a distance h in the z-direction and are infinite 
in extent in the other two directions. The unit-normal to the plate is n. 

The molecular flux is defined to be the number of molecules passing through a unit 
cross-section of the channel in unit time. There are two contributions to this flux. 
One is due to molecules emitted from the wall and passing through the cross-section 
without undergoing any intermolecular collisions. The other contribution to the 
flux comes from molecules which pass through the cross-section after undergoing an 
intermolecular collision. 

The flux due to molecules emitted from the surface is calculated as follows. Assum- 
ing that the molecules are diffusely emitted from the wall, the number of molecules 
coming from an area (dxdy) and passing through an element of the cross-section in 
unit time is 

Q) 

dQw = (dxdy) n(x)  c, f(c) c2 dc dSZ . 
L o  

Here, r2 = (x2 + y2 + z2), dSZ = -xdz/r3 is the solid angle subtended by the 
cross-section element at the point of interest on the wall, and f(c) = ( r n / 2 ~ n k T ) ~ / ~  
exp(-mc2/2k T )  is the Maxwellian velocity distribution function. Of the molecules 
moving at speed c, only a fraction, eC/'('), travel at least a distance r (see chapter 5 
of Chapman & Cowling 1990). A(c) is the speed-dependent mean free path, which is 
given by 

where & is the mean free path of the hard-sphere gas, s = c (rn/2kT)"2, and 

Taking account of this survival probability and also the contribution from both walls, 
the total flow rate becomes 
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Using d62 = -x dz/r3, cos(8) = z/r , n(x) = no + x dnldx, and rearranging, we obtain 

(A 4) 
z dz Qw = -2 * c3 f(c) dc rcc /" x2 dx dy lh e-r/A(c) - . 

dx -cc --a0 r4 

Using cylindrical-polar coordinates x = p cos 4, y = p sin 4 and r2 = pz + zz and 
evaluating the resulting iterated integral, we obtain 

00 

Q W = - 2 n f i  1 c3f(c)dcZ(c). 
dx 

and 

Now, using (A2) for A(c), we can write the flow rate as 

where 

The functions E l @ )  and E3(s) are the exponential integrals defined by (see chapter 5 
of Abramowitz & Stegun 1993) 

a, -st e 
E&)= 1 ,dt, n = 1,2,3 ... . 

We are interested in evaluating Qw in the asymptotic limit 6 -+ 0. For this we note 
that the asymptotic behaviour of L(c) is different in the two limits c + 0 and c -+ cx). 

This can be seen by examining the function y(s), which has the following asymptotic 
forms : 

From this it can be seen that the behaviour of the integrand in (A 6) is different in the 
two regions s<.6<1 (the inner region) and 6 4 s  (6 4 0) (the outer region). Using the 
method of matched asymptotic expansions, it can be shown that the contribution to 
the flux from the inner region, corresponding to cQ1 ( h  4 0), is negligible compared 
to that from the outer region. 
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It can be shown that for 6 4 1 ,  the asymptotic behaviour of the flux qw = Bw/h ,  is 
a2 (- log(6) - y - 2 1 s3eVs2 log (y(s)) ds + O(6)) , 

dn hE qw = --- 
dx 4 (A 9) 

where y = 0.57721.. . is Euler's constant. 
We now proceed to calculate the contribution to the flux due to molecules passing 

through the cross-section after undergoing an intermolecular collision more recently 
than a collision with one of the walls. The rate of intermolecular collisions (for 
molecules of speed c) is c/A(c). The number of molecules coming from an element 
(dx' dy' dz' ) and passing through the cross-section is 

C 
dQc = 1" e-ria(c) - c2 f(c) dc n(x') dx'dy'dz' dS2 . 

c=o 4 c )  

Here, dQ = -x' dz/r3 is the solid-angle element mentioned previously. The total flow 
rate is 

This integral can be evaluated by a procedure similar to that used in the evaluation 
of Qw. The asymptotic behaviour of the flux qc = Q,/h in the limit 6 ~ 1  can then be 
shown to be 

dn 
q c  = -& (7) + O(6). 

The overall flux q = qw + qc becomes 

-log(6) + 1.0 - y - 2 s3e-s2 logw(s) dx + O(6) 

Evaluating the integral involving y(s) numerically, we obtain 

dn hE 
dx 4 

q = --- (- lOg(6) + 0.4513 + O(6)) . 

This expression gives the leading behaviour of the pseudo-Knudsen flux and the 
order-one correction to it. It may be noted that this expression is exact in the 
asymptotic limit 6 B 1. 

The nearly incompressible pressure-driven flow of a rarefied gas in a channel, which, 
for small Mach numbers, is governed by the linearized Boltzmann equation, has been 
the subject of many articles in the literature. Hickey & Loyalka (1990) have solved the 
linearized Boltzmann equation in its exact form. (However, their numerical results are 
not available over a wide range of Knudsen numbers.) On the other hand, solutions 
of approximate forms of the governing equation are also available. For example, 
Cercignani (1963) uses the BGK model for the collision operator and obtains an 
asymptotic expression for the flux valid in the limit 641. It is of interest to compare 
the flux given by (A 12) with the asymptotic form of the flux obtained by solving a 
linearized form of the Boltzmann equation. We compare our pseudo-Knudsen flux 
expression with the flux obtained by Cercignani. 

Cercignani (1963) starts his analysis with the BGK approximation to the linearized 
Boltzmann equation and reduces the problem of finding the flux to one of solving an 
integral equation (for details, see Cercignani 1963). The integral equation is solved by 
an iteration procedure. By stopping at the first step in the iteration, Cercignani was 
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able to recover the leading log(1/6) behaviour for the flux. We have computed the 
0(1) correction to this and the result is 

dn hE 
dx 4 

4 = -- - (- log 6 + 0.4786). 

As can be seen, the expression obtained using the BGK model agrees well with our 
exact result (A 12). The O( 1) term in the expression above was obtained by evaluating 
the quantity Ql, defined by equation (27) in Cercignani (1963). It can be shown that 
further iterations do not contribute to the O(1) term and hence it is sufficient to 
evaluate Ql alone in order to obtain the order-one correction. In obtaining (A13), 
we have converted the mean free path & used by Cercignani to the mean free path 
l o  of a hard-sphere gas by using the relation & = d/2;20 (Cercignani 1975). 
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